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Abstract

Two spectral collocation schemes on the unit disc are presented. The first one is based on the mapping of Gordon

and Hall. Here the unit square is directly mapped onto the unit disc by means of an interpolation technique. Unlike

other Poisson solvers on the unit disc no polar coordinates are involved. Hence the usual problems with the singularity

of polar coordinates are avoided. This is also shown for more complex geometries. The second method is based on a

diameter approach where the collocation nodes are no more clustering in the center. Numerical results are presented

which demonstrate the high accuracy of our new spectral collocation schemes.
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1. Introduction

A new spectral collocation scheme for the Poisson problem on the unit disc is introduced. An efficient
Poisson solver is required in many applications. For instance, in computational fluid dynamics a splitting of

the Navier–Stokes equations leads to Poisson or ‘‘Pseudo-Poisson’’ problems for the pressure [11–13]. Most

Poisson solvers are based on finite difference or finite element methods. Here we consider spectral collo-

cation schemes.

Spectral methods [3,10,20] employ global polynomials for the discretization of elliptic boundary value

problems. They give very accurate approximations for smooth solutions with relatively few degrees of

freedom. For the collocation scheme it is essential to employ a collocation grid based on Gauss– or Gauss–

Lobatto nodes. Hence these methods are well suited for rectangular domains but for more complex ge-
ometries the distribution of collocation nodes is not clear. Since by a stretching any smooth star-shaped

domain can be simply mapped onto the unit disc we consider Poisson problems on this domain. In the

previous spectral literature the Poisson equation is transformed into polar coordinates and then solved by

means of a combined Chebyshev (or Legendre) and Fourier expansion. Here we refer to the existing papers
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in [1,4,5,16,18,19,21]. Unfortunately, this transform leads to a coordinate singularity along the axis at the

center r ¼ 0. Hence most Poisson solvers involve additional ‘‘pole conditions’’ to capture the behaviour of

the solution as r ! 0. This has been discussed in detail by several authors [5,16,21]. An alternative is the use
of Gauss–Radau collocation nodes which exclude the center r ¼ 0. Hence the singularity at the center is

avoided and no extra pole condition is required. The algebraic systems can be efficiently solved by a two-

step eigenvalue technique. For a more detailed description we refer to the paper of Chen et al. [4]. Here we

use a mapping technique introduced by Gordon and Hall [8,9] which maps a square into a quadrilateral

domain with curved boundaries. In particular, we use this mapping for the unit disc where the curved

boundaries are the arcs of the unit circle. Here we avoid the typical problems of polar coordinates where the

terms 1=r and 1=r2 lead to large condition numbers for r ! 0. This effect is quite strong since the collo-

cation nodes are dense near the center r ¼ 0. We observed similar problems for the mapping of the square
onto the triangle [14,15]. For our method we observe the well known high spectral accuracy. This is

demonstrated by numerical results which are compared to the results of Chen et al. [4], Eisen et al. [5],

Huang et al. [16] and Shen [21]. Only in cases where the solution is explicitly given in r (e.g., u ¼ r4) the
treatment with polar coordinates yields better results. This is due to the fact that these schemes use ex-

pansions in r. For the other examples we obtain comparable or even better convergence. This is also

confirmed for more complex geometries where a comparison with the method of Chen et al. [4] shows that

we obtain a much higher accuracy.

In the second part of the paper we present a polar coordinate approach based on the diameter. Here the
clustering of collocation nodes near the center is also avoided. Similar results were already obtained by

Fornberg [6,7] and Torres/Coutsias [23]. Instead of the radius we employ the diameter r 2 ½�1; 1� which
leads to a new distribution of collocation nodes. Now the nodes are only dense near the boundary of the

unit disc but not in the center. By choosing an odd number of radial nodes the center is not a collocation

point and we do not need any pole conditions. In the angular direction h we use for h > p a shift of p=2N so

that an overlap of collocation nodes can be avoided. From numerical experiments we still observe the high

spectral accuracy. Clearly, the condition number is strongly improved and the effect of rounding errors is

reduced. The good performance of our approach is also shown for more complex geometries.
The paper is organized as follows. In the next section we introduce the Poisson problem and the mapping

of Gordon and Hall for the unit disc. This is followed by the spectral discretization in Section 3. Numerical

results and their discussion are presented in Section 4. In Section 5 we extend this technique to more

complex domains. Finally in Section 6 an improved spectral scheme with polar coordinates is presented.
2. The poisson problem and mapping

We consider the Poisson problem

Du ¼ f in D; ð1Þ
u ¼ g on oD ð2Þ

on the unit disc

D ¼ fðx; yÞ : x2 þ y2 < 1g:

Here f ; g denote given functions defined on D and its boundary oD. In order to apply spectral collocation

schemes one has to define a transformed problem on the square. Instead of introducing polar coordinates

we prefer the mapping of Gordon and Hall [3,8,9]. They found a fairly simple interpolation procedure for

mapping a square Q ¼ ð�1; 1Þ2 into a quadrilateral with curved boundaries. We first use this mapping

technique for mapping Q onto the disc
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D� ¼
ffiffiffi
2

p
D ¼ fðx; yÞ : x2 þ y2 < 2g:

The boundary oD� intersects with the four corners of Q. Let the four parts of oD� be denoted by

Ci; i ¼ 1; . . . ; 4 where

C1 ¼ fðx; yÞ : y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2

p
; �1 < x < 1g;
C2 ¼ fðx; yÞ : x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� y2

p
; �1 < y < 1g;
C3 ¼ fðx; yÞ : y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2

p
; �1 < x < 1g;
C4 ¼ fðx; yÞ : x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� y2

p
; �1 < y < 1g:

The corresponding sides of the square Q are denoted by Ĉi; i ¼ 1; . . . ; 4. One uses mappings pi from Ĉi to
Ci to construct the mapping W from Q to D�. Following Gordon and Hall [3,8,9], the mapping W can be

expressed in terms of the pi as follows:

Wðn; gÞ ¼ 1� g
2

p3ðnÞ þ
1þ g
2

p1ðnÞ þ
1� n
2

p2ðgÞ
�

� 1þ g
2

p2ð1Þ �
1� g
2

p2ð � 1Þ
�

þ 1þ n
2

p4ðgÞ
�

� 1þ g
2

p4ð1Þ �
1� g
2

p4ð � 1Þ
�
:

The functions pi; i ¼ 1; . . . ; 4 are given by

p1ðnÞ ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffi

2� n2
p� �

; p3ðnÞ ¼
n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n2

p� �
; �1 < n < 1;
p2ðgÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� g2

p
g

� �
; p4ðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� g2

p
g

� �
; �1 < g < 1:

By using these formulas the mapping can explicitly be written as

x ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� g2

p
; y ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n2

q
:

This defines the mapping of Q onto D�. Finally one obtains D by the stretching

ðx; yÞ ! ðx; yÞ=
ffiffiffi
2

p
:

Since we are interested in the solution of the Poisson problem we have to transform the Laplace operator
into the coordinates of Q. The coordinates ðx; yÞ of D are considered as a function of the coordinates ðn; gÞ
of Q, i.e., x ¼ xðn; gÞ, y ¼ yðn; gÞ. The partial derivatives are now transformed as follows:

xn yn 0 0 0

xg yg 0 0 0

xnn ynn x2n 2xnyn y2n
xng yng xnxg xnyg þ xgyn ynyg
xgg ygg x2g 2xgyg y2g

2
66664

3
77775

ux
uy
uxx
uxy
uyy

2
66664

3
77775 ¼

un
ug
unn
ung
ugg

2
66664

3
77775: ð3Þ
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By inverting the above matrix and taking the sum of the third and fifth row we exactly obtain the co-

efficients of the transformed Laplace operator in ðn; gÞ coordinates. Now we are able to apply spectral

collocation schemes.
3. Spectral collocation

On Q we employ the standard Chebyshev Gauss–Lobatto collocation nodes given by

ðni; gjÞ ¼ cos
ip
N
; cos

jp
N

� �
; i; j ¼ 0; . . . ;N :

By using the described mapping technique of Gordon and Hall we map these collocation nodes onto the

disc D. For N ¼ 24 they are plotted in Fig. 1. Clearly, they are clustering near the points ðx; yÞ ¼
ð�1=

ffiffiffi
2

p
;�1=

ffiffiffi
2

p
Þ on which the four corners of Q are mapped. A zoom of the collocation nodes near

ðx; yÞ ¼ ð1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
Þ is presented in Fig. 2. The partial derivatives of x; y and u in n and g are derived by

means of the spectral collocation operators. In the following we write the spectral derivatives in matrix

notation. First one has to introduce the transformation matrices from the space of function values to the

space of (Chebyshev) coefficients. Since we employ a Chebyshev expansion we obtain the following matrix:

T ¼ cos k
ip
N

� �
; i; k ¼ 0; . . . ;N :
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Fig. 1. Collocation nodes on the unit disc.
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Fig. 2. Zoom of collocation nodes.
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Further we need the differentiation matrix in the Chebyshev coefficient space which is explicitly given by

D̂ ¼ ðdi;jÞ 2 RNþ1;Nþ1 with

di;j ¼
2j
ci

j ¼ iþ 1; iþ 3; . . . ;N ;
0 else

�

and

ci ¼
2 i ¼ 0;
1 else:

�

Now we are able to write the first and second spectral derivative matrices D1 and D2. They are explicitly

given by

D1 ¼ T D̂T�1; D2 ¼ T D̂2T�1:

The spectral operators can be efficiently evaluated by fast Fourier transforms (FFTs) in OðN logNÞ
arithmetic operations. We further introduce the identity matrix I 2 RNþ1;Nþ1. By tensor product repre-

sentation

A� B ¼ Abi;j
� �

i;j
;

we are now able to write the spectral derivatives in 2D. The first order partial derivatives are given by

o

on
ffi D1� I ;

o

og
ffi I �D1:
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The second order derivatives are defined by

o2

onon
ffi D2� I ;

o2

onog
ffi D1�D1;

o2

ogog
ffi I �D2:

The 2D spectral operators can be efficiently evaluated by FFTs in OðN 2 logNÞ arithmetic operations.

Now it is an easy task to implement the collocation scheme.
4. Numerical results

Due to the singularity of the above mapping (corners are mapped onto the smooth parts of the circle) a

large condition number can be expected. In Table 1, we compared the condition numbers of the spectral

Laplace operator evaluated on D respectively Q. They are numerically evaluated in the spectral norm and

are denoted by

condD
2 ; condQ

2 :

From the numerical results we observe that the condition number on D is about 2–3 orders of magnitude
larger than on Q. For time-dependent problems this leads to prohibitively small time steps which is typical

for such kind of singular mappings. Here we recommend implicit time schemes. However, we consider

stationary problems and are interested in the spectral accuracy of the method. For this purpose we cal-

culated the discrete L1 and L2-errors on D. They are denoted by ED
1 and ED

2 where

ED
1 ¼ maxfj ðu� uN Þðxi; yjÞ j: i; j ¼ 0; . . . ;Ng

and

ED
2 ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i;j¼0

ðu� uNÞ2ðxi; yjÞ

vuut :

The errors are once more compared to the corresponding results on Q which are denoted by EQ
1;E

Q
2 . We

consider an example [4,5,16] with a smooth solution given by

uðx; yÞ ¼ cosð7y þ 8xþ 0:7Þ: ð4Þ
Table 1

Condition numbers on D and Q

N condD
2 condQ

2

4 1.16� 101 8.16� 100

8 1.07� 103 8.92� 101

12 2.32� 104 4.25� 102

16 2.19� 105 1.32� 103

20 1.27� 106 3.19� 103

24 5.38� 106 6.59� 103

28 1.83� 107 1.22� 104

32 5.30� 107 2.07� 104

48 1.31� 109 1.05� 105

64 1.30� 1010 3.22� 105
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From Table 2 we observe that the large condition number does not affect the high spectral accuracy. The

results on Q are only slightly better than on D. For N ¼ 28 the precision of our machine (about 10�14) is

already achieved. Hence the singularity of the mapping has nearly no influence on the accuracy. We further
compared our method to the other schemes based on polar coordinates [4,5,16,21]. Here we have to notice

that the cited references take

Nr ¼ N ; Nh ¼ 2N

for the polar coordinates ðr; hÞ. Hence they employ 2N 2 degrees of freedom whereas our method only

requires N 2 degrees of freedom. Hence the computational costs are comparable if we here take N ¼ 12. The

error is measured in the L1-norm. We present numerical results (Table 3) for the above example and the

additional examples

uðx; yÞ ¼ exþy ; ð5Þ
uðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ y þ 2

p
; ð6Þ
uðx; yÞ ¼ lnðxþ y þ 2Þ; ð7Þ
uðx; yÞ ¼ ðx2 þ y2Þ2: ð8Þ

For the examples (4), (6) and (7) we obtain better results than the other references. For example (5) our

results are similar to the others and for more complex geometries we also observe a good performance of

our method (see Table 5). Only for example (8) we obtain much worse results. This is due to the fact that

the exact solution u ¼ r4 can explicitly be written in r and hence the polar coordinate approaches yield exact

results (up to machine precision). Clearly, for problems where the solution is an algebraic polynomial in r
Table 2

Numerical results for example (4)

N ED
2 ED

1 EQ
2 EQ

1

4 5.12� 100 1.49� 101 6.76� 100 1.79� 101

8 8.73� 10�2 2.38� 10�1 7.02� 10�2 1.53� 10�1

12 1.73� 10�3 6.97� 10�3 8.76� 10�4 2.04� 10�3

16 7.81� 10�6 2.73� 10�5 3.44� 10�6 9.37� 10�6

20 1.44� 10�8 4.80� 10�8 5.44� 10�9 1.60� 10�8

24 1.60� 10�11 5.45� 10�11 4.12� 10�12 1.28� 10�11

28 2.35� 10�13 8.39� 10�13 1.28� 10�14 6.38� 10�14

32 2.10� 10�13 9.37� 10�13 2.00� 10�14 7.21� 10�14

Table 3

Numerical results for examples (4)–(8)

Example Present Chen [4] Eisen [5] Huang [16] Shen [21]

cosð7xþ 8y þ 0:7Þ 6.97� 10�3 3.96� 10�1 1.47� 100 4.11� 10�1 –

exþy 3.87� 10�7 2.72� 10�8 3.27� 10�6 2.61� 10�8 2.6� 10�8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ y þ 2

p
3.66� 10�8 1.80� 10�5 – – –

lnðxþ y þ 2Þ 1.25� 10�7 1.34� 10�4 – – –

r4 ¼ ðx2 þ y2Þ2 8.28� 10�7 8.63� 10�15 – 3.30� 10�14 –
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or a trigonometric polynomial in h the other approaches have better approximation properties. But in

general our scheme is better or at least comparable to the methods with polar coordinates.
5. Complex geometry

Here we apply the mapping technique of Gordon and Hall to more complex geometries. We consider the

Poisson problem on domains with smooth boundaries C which are parameterized in the arc length h:

CðhÞ ¼ dðhÞ cosðhÞ
dðhÞ sinðhÞ

� �
; 06 h < 2p:

Here dðhÞ denotes the radius in h. The domain is normalized such that dðp=4Þ ¼ 1. In order to apply the

mapping technique of Gordon and Hall we have to define the mappings pi; i ¼ 1; 2; 3; 4. Here we only

consider p1. For given nj ¼ cosðjp=NÞ; j ¼ 0; . . . ;N one determines the arc length hj by solving the equation

dðhÞ cosðhÞ ¼ nj

by a few steps (3–4 steps) of a Newton iteration. Then we obtain

p1ðnjÞ ¼
nj

dðhjÞ sinðhjÞ

� �
: ð9Þ

A similar technique works for the other three mappings. Since the boundary curve is already given in a

parameterized form it makes sense to define modified mappings p̂i in the arc length h. We once more
describe this approach only for p̂1. First one maps the variable n 2 ½�1; 1� onto h 2 ½p=4; 3p=4� by

h ¼ hðnÞ ¼ p
4

2ð � nÞ:

Then for given nj we determine hj ¼ hðnjÞ and obtain

p̂1ðnjÞ ¼
dðhjÞ cosðhjÞ
dðhjÞ sinðhjÞ

� �
: ð10Þ

A similar approach works on the other three parts of the boundary. By a numerical simulation we

compared both approaches. We consider boundary curves given by

d̂ðhÞ ¼ 1þ sin2ðkhÞ; k ¼ 0; 1; 2; ð11Þ

which are normalized such that dðp=4Þ ¼ 1, i.e.,

dðhÞ ¼ d̂ðhÞ=d̂ p
4

	 

; k ¼ 0; 1; 2: ð12Þ

For k ¼ 0 we reobtain the unit disc and for k ¼ 1; 2 the boundaries become more complex. In Figs. 3 and

4 we plotted the distribution of collocation nodes for k ¼ 1; 2 due to the parameterized mapping (10). We

numerically calculated the discrete L2-error for the Poisson problem with the exact solutions (4) and (5).
The errors are denoted by E2 for mapping (9) and Ep

2 for the parameterized mapping (10). The corre-

sponding results are presented in the Tables 4 and 5 for k ¼ 0; 1; 2. On the unit disc (k ¼ 0) mapping (9)

yields the most accurate results. For more complex domains (k ¼ 1; 2) the parameterized version (10) be-

comes better. This could be expected since a discretization along the arc length yields a higher order res-

olution of the boundary. Clearly, for increasing k the spectral accuracy is somewhat disturbed. For kP 3
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Fig. 3. Collocation nodes on complex geometry (k ¼ 1).
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the collocation nodes near the four corners are mapped onto nodes outside the domain (see Fig. 5). Hence
for increasing oscillations of the boundary the present approach should not be used. But for moderate

oscillations of the boundary curve we obtained a high order method. For more complex domains we also

tested the polar coordinate approach. The mapping is given by
x
y

� �
¼ r

dðhÞ cosðhÞ
dðhÞ sinðhÞ

� �
; 06 r6 1; 06 h < 2p: ð13Þ
We have to transform the Laplace operator into the polar coordinates. For this purpose we introduce the

following abbreviations:
d ¼ dðhÞ; d 0 ¼ d 0ðhÞ; d 00 ¼ d 00ðhÞ; c ¼ cosðhÞ; s ¼ sinðhÞ:
The partial derivatives are now transformed as follows:

a11 a12 a13 0 0

a21 a22 a23 0 0

a31 a32 a33 a34 a35
0 0 0 a44 a45
0 0 0 a54 a55

2
66664

3
77775

uxx
uxy
uyy
ux=r
uy=r

2
66664

3
77775 ¼

urr
ðrurh � uhÞ=r2

uhh=r2

ur=r
uh=r2

2
66664

3
77775; ð14Þ
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Fig. 4. Collocation nodes on complex geometry (k ¼ 2).

Table 4

Numerical results for example (4) with Gordon and Hall

N k ¼ 0 k ¼ 1 k ¼ 2

E2 Ep
2 E2 Ep

2 E2 Ep
2

8 8.73� 10�2 1.36� 10�1 2.08� 10�1 2.08� 10�1 3.25� 10�1 2.35� 10�1

16 7.81� 10�6 9.77� 10�5 1.25� 10�3 3.13� 10�3 3.03� 10�2 3.89� 10�3

24 1.60� 10�11 8.23� 10�9 5.10� 10�5 1.12� 10�5 3.59� 10�3 3.79� 10�5

32 2.10� 10�13 2.99� 10�13 4.15� 10�6 1.68� 10�8 5.08� 10�4 2.77� 10�7

48 8.21� 10�13 8.35� 10�13 4.16� 10�8 8.21� 10�13 1.69� 10�5 6.63� 10�12

64 2.32� 10�12 2.20� 10�12 5.34� 10�10 2.21� 10�12 9.33� 10�7 2.07� 10�12

Table 5

Numerical results for example (5) with Gordon and Hall

N k ¼ 0 k ¼ 1 k ¼ 2

E2 Ep
2 E2 Ep

2 E2 Ep
2

8 8.58� 10�6 1.26� 10�6 9.30� 10�4 1.78� 10�4 4.25� 10�3 1.93� 10�3

16 1.71� 10�9 1.14� 10�12 3.69� 10�5 7.91� 10�9 4.66� 10�4 3.61� 10�7

24 5.47� 10�13 4.84� 10�14 2.65� 10�6 4.51� 10�13 5.98� 10�5 1.33� 10�10

32 8.22� 10�14 9.65� 10�14 2.33� 10�7 7.89� 10�14 8.63� 10�6 8.73� 10�14

48 8.11� 10�13 7.65� 10�13 2.42� 10�9 5.80� 10�13 2.96� 10�7 1.18� 10�12

64 1.50� 10�12 1.37� 10�12 3.13� 10�11 1.17� 10�12 1.73� 10�8 2.98� 10�12
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Fig. 5. Collocation nodes on complex geometry (k ¼ 3).
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where A ¼ ðaijÞ; i; j ¼ 1; 2; 3 is given by

A ¼
d2c2 2csd2 d2s2

dcðd 0c� dsÞ d2ðc2 � s2Þ þ 2dd 0cs dsðd 0sþ dcÞ
ðd 0c� dsÞ2 2ðd 02 � d2Þscþ 2dd 0ðc2 � s2Þ ðd 0sþ dcÞ2

2
4

3
5

and the other components are

a34 ¼ d 00c� 2d 0s� dc; a35 ¼ d 00sþ 2d 0c� ds;
a44 ¼ dc; a45 ¼ ds; a54 ¼ d 0c� ds; a55 ¼ d 0sþ dc:

By inverting the above matrix and taking the sum of the first and third row we exactly obtain the co-

efficients of the transformed Laplace operator in polar coordinates. Now we are able to apply spectral

collocation schemes. Here we follow the approach of Chen et al. [4]. In the radius r they employ Chebyshev

Gauss–Radau collocation nodes given by

rj ¼
1

2
1

�
þ cos

2pj
2Nr þ 1

�
; j ¼ 0; . . . ;Nr:

The center r ¼ 0 is avoided and hence no extra pole condition is required. The corresponding trans-

formation matrix T now results in

T ¼ cos
2pjk

2Nr þ 1

� �
; j; k ¼ 0; . . . ;Nr:
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The derivatives in r can be constructed in the same way as in Section 3. The derivatives in h are obtained

by Fourier collocation [3]. The collocation nodes are equidistant, i.e.,

hj ¼
2pj
Nh

; j ¼ 0; . . . ;Nh � 1:

The derivative matrix is explicitly given by

DNh

� �
kj
¼

1
2
ð�1Þkþj

cot ðk�jÞp
Nh

k 6¼ j;

0 k ¼ j:

(

Partial derivatives are derived by tensor product representation. In our applications we choose

Nr ¼ N ; Nh ¼ 2N :

We performed numerical simulations for the examples (4) and (5). The errors in the discrete L2- and L1-

norms were calculated. The boundary curve is once more given by (11) with k ¼ 1; 2; 3. Here we observe
that also for increasing k we obtain reasonable distributions of collocation nodes (see Figs. 6 and 7 for

k ¼ 2; 3 and N ¼ 16). Clearly, due to the high oscillation of the solution we obtain less favorable results for

example (4) (see Table 6). Here the mapping of Gordon and Hall yields much better results. The difference

between polar coordinates and our mapping technique becomes more striking for example (5) (see Table 7).

For N ¼ 32 we always obtain machine accuracy with an error of about 10�14. For increasing complexity of

the domain (kP 3) we recommend a decomposition of the domain so that on each subdomain the proposed

mapping technique can be employed.
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Fig. 6. Collocation nodes with polar coordinates (k ¼ 2).
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Fig. 7. Collocation nodes with polar coordinates (k ¼ 3).

Table 6

Numerical results for example (4) with Chen�s polar coordinates

N k ¼ 1 k ¼ 2 k ¼ 3

E2 E1 E2 E1 E2 E1

8 1.91� 100 2.82� 100 2.58� 100 4.99� 100 1.14� 100 2.34� 100

16 5.81� 10�2 1.46� 10�1 3.09� 10�1 5.93� 10�1 4.29� 10�1 1.43� 100

24 2.58� 10�3 3.65� 10�3 2.02� 10�2 3.79� 10�2 1.87� 10�1 5.94� 10�1

32 1.28� 10�5 1.77� 10�5 2.11� 10�3 2.69� 10�3 4.20� 10�2 1.24� 10�1

48 1.66� 10�11 2.41� 10�11 1.34� 10�6 1.66� 10�6 1.03� 10�3 3.45� 10�3

62 3.21� 10�12 1.58� 10�11 4.51� 10�10 5.42� 10�10 1.42� 10�4 1.80� 10�4

Table 7

Numerical results for example (5) with Chen�s polar coordinates

N k ¼ 1 k ¼ 2 k ¼ 3

E2 E1 E2 E1 E2 E1

8 1.10� 10�2 1.40� 10�2 1.31� 10�1 2.31� 10�1 1.91� 10�1 4.06� 10�1

16 2.38� 10�7 3.64� 10�7 1.07� 10�3 1.65� 10�3 1.63� 10�2 4.15� 10�2

24 2.97� 10�11 3.39� 10�11 2.42� 10�6 3.00� 10�6 1.22� 10�3 2.16� 10�3

32 2.48� 10�12 8.23� 10�12 3.59� 10�9 4.15� 10�9 1.65� 10�6 1.06� 10�5

48 4.79� 10�12 2.37� 10�11 2.10� 10�12 9.46� 10�12 2.00� 10�9 2.70� 10�9
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6. Improved polar coordinate approach

Here we introduce polar coordinates ðr; hÞ and the transformed equation on the unit disc D reads as
follows:

r2urr þ rur þ uhh ¼ r2f : ð15Þ

For stability reasons the original equation was multiplied by r2. Usually one considers r 2 ½0; 1� and
h 2 ½0; 2p� and one employs Chebyshev collocation in r and Fourier collocation in h. Here we allow

r 2 ½�1; 1� and h 2 ½0; 2p�. In r we employ the standard Chebyshev Gauss–Lobatto nodes given by

ri ¼ cos
ip
Nr

; i ¼ 0; . . . ;Nr:

In order to avoid an overlap of collocation nodes the discrete angles hj are given by

hj ¼
j p
N j ¼ 0; . . . ;N � 1;

pþ p
2N þ ðj� NÞ p

N j ¼ N ; . . . ; 2N � 1:

�
ð16Þ

For given N (N even) we choose

Nr ¼ N � 1; Nh ¼ 2N :

Since Nr ¼ N � 1 is odd the center r ¼ 0 is not a collocation point. By this choice we avoid some extra

pole condition. In Figs. 8 and 9 we plotted the collocation nodes of Chen et al. and our method for N ¼ 16.

Clearly, the nodes of Chen are clustering near the center whereas our nodes keep far away from r ¼ 0. In

the numerical simulations this leads to an improved condition number. Let us first describe the spectral

collocation scheme in r. First one has to introduce the transformation matrices from physical space to

coefficient space. Since we employ a Chebyshev expansion we obtain the following matrix:

T ¼ cos k
ip
Nr

� �
; i; k ¼ 0; . . . ;Nr:

Further we need the differentiation matrix in the Chebyshev coefficient space which is explicitly given by

D̂ ¼ ðdi;jÞ 2 RNrþ1;Nrþ1. Now we are once more able to write the spectral derivative matrices D1 and D2 for

the first and second derivatives. They are explicitly given by

D1 ¼ T D̂T�1; D2 ¼ T D̂2T�1:

The spectral operators can be efficiently evaluated by fast Fourier transforms (FFTs) in OðNr logNrÞ
arithmetic operations. The derivatives in h are derived in a similar fashion. First we introduce the (real)

Fourier basis

/kðxÞ ¼
sinðk þ 1Þx k ¼ 0; . . . ;N � 2;
cosNxþ sinNx k ¼ N � 1;
cosðk � NÞx k ¼ N ; . . . ; 2N � 1:

8<
:

The corresponding transformation matrix in Fourier space is now defined as follows:

Th ¼ /kðhjÞ
� �

; j; k ¼ 0; . . . ; 2N � 1;
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Fig. 8. Collocation nodes of Chen et al.
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where the nodes hj are given in (4). The second derivative in coefficient space is

D̂2
h ¼

�diagððk þ 1Þ2Þ k ¼ 0; . . . ;N � 1;

�diagððk � NÞ2Þ k ¼ N ; . . . ; 2N � 1:

�

Now the second derivative in Fourier space reads as

D2h ¼ ThD̂2
hT

�1
h :

The first derivative can be constructed as follows. We first evaluate

/0
kðhjÞ ¼

ðk þ 1Þ cosðk þ 1Þhj k ¼ 0; . . . ;N � 2; j ¼ 0; . . . ; 2N � 1;
N cos jp k ¼ N � 1; j ¼ 0; . . . ;N � 1;
�N cos jp k ¼ N � 1; j ¼ N ; . . . ; 2N � 1;
�ðk � NÞ sinðk � NÞhj k ¼ N ; . . . ; 2N � 1; j ¼ 0; . . . ; 2N � 1

8>><
>>:

and then obtain with Dh ¼ ð/0
kðhjÞÞ

D1h ¼ DhT�1
h :

By tensor product representation it is once more an easy task to write the spectral partial derivatives in
2D. First we compared the condition numbers of our approach and the approach of Chen et al. [4]. They

are numerically evaluated in the spectral norm. From the numerical results in Table 8 we observe that the
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Fig. 9. Collocation nodes with our method.

Table 8

Condition numbers

N Present method Chen et al.

8 3.79� 102 1.82� 104

16 1.08� 104 3.70� 105

24 7.37� 104 2.17� 106

32 2.82� 105 7.62� 107

48 1.81� 106 4.45� 107

62 5.76� 106 1.35� 108
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condition number of the spectral operator introduced by Chen is about 2–3 digits larger than for the

present method. Hence for time-dependent problems our approach leads to less restrictive time limitations.

However, we consider stationary problems and are interested in the global accuracy of the method. For this

purpose we calculated the discrete L2-errors ku� uNk2. We once more consider the two examples (4) and (5)

introduced in [4,5,16]. From the Tables 9 and 10 we observe the high spectral accuracy for both methods.

Due to the large condition number of Chen�s method the accuracy is somewhat disturbed for increasing N .

For example (5) with N ¼ 32 there is a loss of 3 digits in accuracy compared to our method. The numerical
results substantiate the usefulness of our new approach.

Once more we consider the Poisson problem on domains with smooth boundaries C which are pa-

rameterized in the arc length h. The mapping is given by

x
y

� �
¼ ðdðhÞr þ bðhÞÞ cosðhÞ

sinðhÞ

� �
; �16 r6 1; 06 h < 2p; ð17Þ



Table 9

Numerical results for example (4)

N Present method Chen et al.

8 1.73� 100 2.33� 100

16 3.67� 10�3 3.42� 10�3

24 1.03� 10�7 6.00� 10�9

32 2.04� 10�13 1.75� 10�11

Table 10

Numerical results for example (5)

N Present method Chen et al.

8 2.28� 10�6 2.86� 10�6

16 1.03� 10�14 1.78� 10�13

24 6.62� 10�14 2.47� 10�11

32 7.02� 10�14 2.34� 10�11
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where

dðhÞ ¼ r2ðhÞ � r1ðhÞ
2

; bðhÞ ¼ r2ðhÞ þ r1ðhÞ
2

:

Here r1; r2 denote the distances of the boundary curve from the center r ¼ 0. We have to transform the

Laplace operator into the polar coordinates. For this purpose we introduce the following abbreviations:

d ¼ dðhÞ; c ¼ cosðhÞ; s ¼ sinðhÞ:

The partial derivatives are now transformed as follows:

ðdcÞ2 2csd2 ðdsÞ2 0 0

dcxh dsxh þ dcyh dsyh ðdcÞh ðdsÞh
x2h 2xhyh y2h xhh yhh
0 0 0 dc ds
0 0 0 xh yh

2
66664

3
77775

uxx
uxy
uyy
ux
uy

2
66664

3
77775 ¼

urr
urh
uhh
ur
uh

2
66664

3
77775: ð18Þ

By inverting the above matrix and taking the sum of the first and third row we exactly obtain the coeffi-
cients of the transformed Laplace operator in polar coordinates. Now we are able to apply spectral col-

location schemes in the same manner as before. We consider boundary curves with b � 0 and d given by

(11) and (12). For k ¼ 0 we reobtain the unit disc and for k ¼ 1; 2; 3 increasing mode numbers of the

boundary curve are considered. In the Figs. 10–12 we plotted the distribution of collocation nodes for

k ¼ 1; 2; 3 and N ¼ 16. We performed numerical simulations for the examples (4) and (5). The errors E2;E1
in the discrete L2- and L1-norms were calculated. For example (5), k ¼ 1 we obtain for N ¼ 32 the machine

accuracy with an error of about 10�14 (see Table 12). Clearly, due to the high oscillation of the solution we

obtain less favorable results for example (4) (see Table 11). For increasing complexity of the problem
(solution or domain) we recommend a decomposition of the domain so that on each subdomain the

proposed mapping technique can be employed.

Finally we compared our approach with the existing literature on diameter expansions. Also Fornberg

[6,7] recommends the expansion over diameters as a means of avoiding the serious clustering at the origin.
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Fig. 11. Collocation nodes on complex geometry (k ¼ 2).
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Fig. 10. Collocation nodes on complex geometry (k ¼ 1).
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Table 11

Numerical results for example (4) with the diameter approach

N k ¼ 1 k ¼ 2 k ¼ 3

E2 E1 E2 E1 E2 E1

8 1.40� 100 3.57� 100 7.62� 10�1 2.70� 100 1.92� 100 6.31� 100

16 1.53� 10�1 9.28� 10�1 2.39� 10�1 1.43� 100 1.09� 100 5.43� 100

24 3.04� 10�3 2.15� 10�2 1.34� 10�2 1.12� 10�1 4.13� 10�1 3.32� 100

32 1.52� 10�5 1.28� 10�4 7.39� 10�4 7.13� 10�3 1.05� 10�1 1.10� 100

48 2.65� 10�11 3.02� 10�10 1.53� 10�7 2.31� 10�6 5.09� 10�3 4.29� 10�2

62 3.42� 10�13 1.00� 10�12 3.70� 10�10 3.28� 10�9 1.71� 10�4 1.60� 10�3

Table 12

Numerical results for example (5) with the diameter approach

N k ¼ 1 k ¼ 2 k ¼ 3

E2 E1 E2 E1 E2 E1

8 4.18� 10�3 1.63� 10�2 4.86� 10�2 1.46� 10�1 5.57� 10�1 2.55� 100

16 5.48� 10�7 2.92� 10�6 6.68� 10�4 2.69� 10�3 3.85� 10�2 1.77� 10�1

24 1.82� 10�11 9.84� 10�11 1.19� 10�6 6.17� 10�6 5.91� 10�4 3.39� 10�3

32 6.70� 10�14 2.20� 10�13 1.60� 10�9 9.52� 10�9 5.13� 10�5 3.89� 10�4

48 9.74� 10�14 3.86� 10�13 1.01� 10�13 3.63� 10�13 7.67� 10�9 6.91� 10�8
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An efficient implementation was presented by Shen [22] and in MATLAB by Trefethen [24]. Fornberg first

writes the complete collocation system where grid values at symmetric points occur twice. This is due to the

fact that the mapping form ðr; hÞ to ðx; yÞ is 2-to-1. Then the redundant equations are eliminated by using
the symmetry condition

uðr; hÞ ¼ uð�r; hþ pÞ:

We do not need such an elimination process since we avoid a double gridding by shifting the h-grid for

h > p. If the same collocation grids are used then Fornbergs and our approach should yield the same

spectral approximation. But in fact, Fornberg uses the double amount of collocation nodes in r, i.e.,
Nr ¼ 2N � 1 and only the half amount of nodes in h, i.e., Nh ¼ N . We think that our grid is more ap-

propriate for the diameter approach since the numbers of collocation conditions are chosen in accordance

to the polynomial degrees in r and h. Due to the substantial regularity of the solution it is not reasonable to
use about 2N conditions of collocation for a polynomial of degree N in r. On the other hand, we allow a

better resolution in h with twice the amount of collocation nodes. We think that Fornbergs grid is well

suited for the radius approach but not for the diameter approach. Torres and Coutsias [23] use the diameter

approach for the spectral tau scheme with parity-adjusted basis functions. By converting the Chebyshev

operator into an equivalent (well conditioned) tridiagonal form, no additional pole condition or other

regularization is required for the Poisson problem. On the other hand, the Helmholtz operator poses se-

rious conditioning problems. A direct compare to our collocation scheme is not possible since the tau

method with parity-adjusted basis functions yields a very different approach. Huang et al. [17] show that
imposition of one pole condition (i.e. vanishing at r ¼ 0 to some fixed, low order only regardless of Fourier

mode number) suffices for regularity of solutions of the Poisson problem. A further discussion of pole

conditions can also be found in Boyd [2]. We do not claim the superiority of the odd grid for the diameter

approach. With suitable pole conditions and/or proper care for parity the choice of even or odd grids makes

little difference.
7. Conclusion

Poisson problems on the unit disc are solved by spectral collocation schemes based on the mapping of

Gordon and Hall. The problems of polar coordinate approaches with a singularity in r ¼ 0 are avoided and

the well known high spectral accuracy is maintained. For a comparison we present numerical results which

show the good performance of our new approach. Furthermore we present a diameter approach where the

collocation nodes are not clustering near the center. Hence the condition number of the spectral operator is

improved. Finally it is also shown that the methods can be successfully applied to more complex domains.
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